
2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM 
ROBOTIC SYSTEMS MINI-SYMPOSIUM 

AUGUST 17-19 DEARBORN, MICHIGAN 

 
 

OPTIMAL SWITCHING CURVE FOR A MULTIPLE LINK WALKING ROBOT 
USING NELDER MEAD OPTIMIZATION  

 
Paul Muench 

Jamie MacLennan 
US Army RDECOM / TARDEC  

Warren, MI 

 James English, PhD 
Energid Technologies 

Boston, MA 

   
   

ABSTRACT 
Over the past several years, legged mechanisms have shown remarkable progress towards practicality.  The need now is for 

efficient means of controlling these mechanisms.  In previous papers, we have found the optimal switching curve for controlling a 

simplified model of walking called the rimless wheel model.  In this paper, we again find the optimal switching curve for the 

rimless wheel using another approach--Nelder and Mead’s simplex algorithm, a technique for global optimization.  We compare 

the results from Nelder Mead with those obtained from our previous research using Pontryagin’s Maximum Principle.  We extend 

these results by applying Nelder Mead optimization to the walking gait of a multiple link model. We find an initial example of 

efficient control using this powerful technique. 

 

INTRODUCTION 
Legged systems have always held a promise (albeit a 

somewhat futuristic one) of mobility [1].  Until recently, 

most research in legged robotics has indeed focused on 

stability.  Recent research [2] has come to the conclusion 

that stability is a necessary, but not sufficient condition.  

Efficiency is the key to gaining the true benefits of walking 

mechanisms.  Particularly, we examine the efficiency of the 

powering scheme, u(t), of a legged robot.  In previous papers 

[3-4] we have shown the existence of an optimal switching 

curve for a simplified model of walking based on Tad 

McGeer’s rimless wheel model [5].  In this paper, we find an 

optimal switching curve for the rimless wheel model using 

Nelder Mead Optimization and compare the results from our 

previous analysis using Pontryagin’s Maximum Principle.  

We extend these results to the walking gait of a multiple link 

model. 

 

NELDER MEAD OPTIMIZATION 
Nelder and Mead’s simplex algorithm [6] is a popular, 

time-proven technique for optimizing general (nonsmooth) 

multivariable functions.  Optimization algorithms of this 

type are called direct methods.  They are robust and general 

and applicable to the problem of gait determination by 

parameterizing the gait and defining a metric over these 

parameters for optimization.  

For function f(∙) defined on an n-dimensional domain 

space, Nelder and Mead’s method finds a minimum using a 

simplex formed with n+1 points.  The process of finding a 

minimum proceeds through a process of transforming the 

simplex by 1) shifting points in the direction of a minimum, 

2) shrinking, and 3) expanding. In addition, a restarting 

criterion can be used.  This restarting criterion uses the 

concept of a simplex gradient.  The Nelder-Mead algorithm 

continually updates a simplex in the N-dimensional space of 

the problem.  For N=3, this simplex is a tetrahedron as 

illustrated figure 1.  There are N+1 vertices and N+1 

corresponding function values. 
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Figure 1:  Nelder-Mead uses function evaluation over the 

vertices of an N-dimensional simplex to optimize a criterion 

function over an N-dimensional space.  Shown here is a 

tetrahedron, which is a simplex for N=3.  There are N+1 

vertices in an N-dimensional simplex. 
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APPROXIMATION OF THE SWITCHING CURVE 
FOR THE SIMPLE PENDULUM 

 

 

 
 

Figure 2: The rimless wheel model of walking acts like a 

powered simple pendulum (between foot collisions). 

 

We can describe the cost of powering the rimless wheel as 

a combination of energy and time cost.  We designate the 

cost, J, composed of a time cost, T, with a proportionality 

constant, k and an energy cost, E for a given function of 

torque, u(t).  The ―optimal‖ control function u*(t) thus 

requires little energy but still reaches the destination quickly. 

 

 

(1) 

 

Equation 1 describes a functional, i.e., J is a function of a 

function.  Since u(t) could take on any shape, we describe it 

using a high degree of freedom system (20-40 components).  

These functional components were optimized using Nelder-

Mead in order to minimize the cost functional, J.  As we saw 

in previous results using Pontryagin’s Maximum Principle, 

when we optimized the torque function, we found evidence 

of a ―switching curve.‖  However, the result shown in figure 

3 was only found after adjusting the initial simplex 

parameters and adding a sufficient number of components. 

We used Nelder-Mead to optimize the coefficients of a 

Fourier series (half-range expansion of the torque function) 

to approximate the solution. 

 
Figure 3: Fourier Series half range expansion found using 

Nelder-Mead Optimization 

  

Likewise, we performed a Nelder-Mead optimization on 

the cubic spline components of the torque function.  

Pontryagin’s Maximum Principle provides the correct 

answer to this problem at k = 5.  The solution is a switching 

curve at 0.6s with a cost of 5.34.  Nelder-Mead confirms this 

result. 

  
Figure 4: Spline Components found in Nelder-Mead 

Optimization 
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Nelder Mead Steps 
 

Order the points from lowest cost to greatest  

Calculate the values of each simplex point 

Try new point to replace the worst point. The 

algorithm attempts each step below in order until the 

cost of the proposed point is less than that of the 

worst point.   

   Reflection – reflects worst point about the center 

of the simplex  

   Expansion – expands in the direction of the best 

point 

   Contraction – shifts worst point towards the best 

point 

   Reduction – if no other options are available, 

each simplex point except the best is shrunk towards 

the center 

Accept the point once a step successfully reduces 

the cost 

Repeat process until a pre-specified tolerance is 

met  
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Note on Nelder Mead  

Due to the many local minima, we found that it was 

critical to set the maximum value of torque, u(t) < 1  for the 

simple pendulum.  Without limiting the results to the 

maximum torque, Nelder-Mead would shoot briefly shoot 

above the maximum, in essence concluding that the square 

error we set was worth the penalty.  To achieve a soft sort of 

clipping, we used a sine function to obtain the results shown.  

After Nelder Mead obtained a spline function for u(t), we 

would feed Sin[u(t)] into the cost function.  If we were to 

hard clip u(t) at the maximum, this might feed sharp corners 

into our Runge-Kutta integrator, like sticking a fork into the 

garbage disposal.  

 

MULTIPLE LINK ROBOT CONTROL 
To apply this approach to the gait optimization problem, a 

two-link pendulum model was constructed, as illustrated 

below.  It has two rotational degrees of freedom. 

 

m1

m2

1

2

{x,y}

 
 

Figure 5: Multiple Link Robot Model used for illustrating 

optimized stride construction.   

 

Each link length is 1 m.  The masses of the links are at the 

ends of the links, and the mass values are variable—

generally,
1 2

m m .  For optimizing the stride, the point in 

the lower right about which 
1
  rotates is assumed fixed.  

The location of the point at the end of the second link is 

represented in inertial coordinates as {x, y}.  To 

parameterize a stride, the torque input on the second joint 

(
2

  in the figure above) was constructed from a length-

3   vector of real numbers: 

 

 

 

 

 

 

(2) 

 

 

 

 

 

 

In (2), the last two numbers provide the initial conditions 

on the joint rates.  The first   numbers are torques and form 

the domain values of knots for a spline, typically—but not 

necessarily—a cubic spline.  Splines give a continuous and 

continuously differentiable function that is well behaved and 

practical to implement.  These values are equally distributed 

over a time determined by the number in X at the 1 
 

position.  Let this curve be defined as P[X].  The graphic 

below illustrates its formation.  
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Figure 6:  Illustrations of torque input functions P[X] 

constructed using the defined parameterization.  The 

parameters  
1
   and 

2
  do not affect the shape of the curve. 
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Let τ
 
be the column vector of torques on the joints, θ  be 

the column vector of joint values (i.e., 
1 2

[ ]
T

 θ ) , ( )M θ  

be the inertia matrix, ( , )C θ θ  be the vector of Coriolis and 

centripetal terms, and ( )G θ  be the vector of gravitational 

torques.  With these definitions, the system dynamics for the 

model shown in 5 are given through the following: 

 

(3) 

 

We do not consider frictional forces in this study.  To form 

a metric for optimization, we set 

 

 

 

 

(4) 

 

 

We integrate the differential equation in (3) over the time 

period of P(X) using the last two parameters in X as the 

initial joint rates.  The initial joint positions are fixed in this 

study.  A metric H for optimization is formed by combining 

several submetrics ih  using positive weights iw  as follows: 

 

 

(5) 

 

For our studies, the submetrics were selected from among 

the following: 

 

The integral of the input torque squared: 

   
2

0

T

ih P x t dt   

The Euclidean error in end-point placement: 

   
2 2

i d dh x x y y     

A measure of the difference in kinetic energy  

 
2

T T

i i i f fh     M M     

 

With this choice of metrics, we were able to calculate 

strides by optimizing X. 

   

Example 

For an example, the masses are set to 1
51

m   and 
2

1m  .  

Gravity is 9.8 m/s
2
 along vertical.  The initial values for the 

joints are 5
61

   radians and 2
32

    radians.  The 

metric is set to the following: 

 

 

 

 

(6) 

 

 

This is meant to be one example of a selection that could 

be used.  With the high weights used, it effectively seeks to 

drive the point-placement error and the energy difference to 

zero while reducing the magnitude of the applied torque.   

This configuration and metric selection was used with 

randomized Nelder-Mead optimization to calculate a stride 

by calculating 20 results and choosing the one with the 

smallest metric value.  Based on using four torque values to 

build the spline curve, the following value was calculated: 

 

 

 

 

 

 

(7) 

 

 

 

 

 

 

These give a metric value of 0.142565, and produce the 

following very low input torque: 
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Figure 7: The input torque to drive the stride. 

 

This torque, when input to the system defined through (3) 

and integrated gives the following output which is illustrated 

through a sequential rendering of the system in figure 8. 
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Figure 8: Screen shots from the optimized stride. 

The stride produced by the input torque selected is shown in 

the figure above.  The endpoint ends approximately 

symmetrically offset from its starting position and the 

system ends with approximately the kinetic energy with 

which it started. 

 

 

CONCLUSIONS AND FUTURE WORK 
The switching curve we have shown for the simple 

pendulum agrees closely with the global optimal control 

u*(t) obtained through Pontryagin’s Maximum Principle 

(PMP) and other methods.  The result we show for the 

double pendulum should be interpreted not as a claim of 

global optimal control, but as a typical example of an 

optimized stride for a more realistic walking model.  

 

The results we found were not obtained by assuming any 

type of switching curve, i.e., we did not feed Nelder Mead 

the answer; however, we knew a priori that the result (at 

least for the simple pendulum) should look like a switching 

curve.  Perhaps we found what we were looking for, because 

the results we show in figures 3 and 4 were not typical.  In 

fact, you could find many local minima for u(t) that looked 

nothing like a switching curve but had a cost within ten 

percent or so of the optimal cost.  Without the knowledge 

that a switching curve was the optimal control, we could 

have easily given up the search for the global minimum.  

Like traveling with a map, we found the previous results 

were a guide to Nelder Mead. 

 

For the double pendulum we see an example of an 

optimized stride.  Is this a global optimum?  We simply do 

not know.  We would like to further research these results 

using PMP or a similar technique.  It may be that strict 

optimality is not critical, but rather knowing that you are 

close.   

 The nice thing about having a stationary switching curve 

in phase space is that you have a simple ―map‖ to follow no 

matter where you find yourself.  Thus, if you deviated from 

the optimal path, you could simply recalculate your position 

on the ―map‖ and shoot for switching curve.  Contrast that 

with trying to follow an optimal stride without this 

information.  If you deviate too far from the optimal path, 

you might not be able to find your way back.  That being 

said, for repetitive tasks like walking, it is likely desirable to 

strictly follow a known optimal stride. 
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